MIMO Hinf control for power source coordination - application to energy management systems of electric vehicles
نویسندگان
چکیده
This paper deals with a control strategy used for designing energy management systems within average-power electric vehicles. The power supply system is composed of three sources, namely a fuel cell, a battery and an ultracapacitor – specialized within distinct frequency ranges – which must be coordinated in order to satisfy power demand of the vehicle’s electrical motor. The three sources with their associated DC-DC converters are paralleled on a common DC-bus supplying the electrical motor. The DC-bus is required to be constant regardless of the load state thanks to the fuel cell which provides the mean power and to the other two sources – auxiliary sources – which are controlled to supply the high-frequency variations of power demand according to an H∞ optimization strategy. MATLAB R ©/SimulinkR © numerical simulation is used to validate the proposed strategy under real driving cycle condition proposed by IFSTTAR (Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux), and this approach is assessed against another optimal strategy that uses LQR as control design.
منابع مشابه
Energy Management in Microgrids Containing Electric Vehicles and Renewable Energy Sources Considering Demand Response
Microgrid and smart electrical grids are among the new concepts in power systems that support new technologies within themselves. Electric cars are some advanced technologies that their optimized use can increase grid efficiency. The modern electric cars sometimes, through the necessary infrastructure and proper management, can serve as an energy source to supply grid loads. This study was cond...
متن کاملMIMO H∞ control for power source coordination – application to energy management systems of electric vehicles
This paper deals with a control strategy used for designing energy management systems within average-power electric vehicles. The power supply system is composed of three sources, namely a fuel cell, a battery and an ultracapacitor – specialized within distinct frequency ranges – which must be coordinated in order to satisfy power demand of the vehicle’s electrical motor. The three sources with...
متن کاملIntelligent Power Control of Green Building-Integrated of Fuel Cell and Plug-in Electric Vehicle in Smart Distribution Systems
The renewable energy sources and plug-in electric vehicles (PEVs) are becoming very popular because of the combination of high fuel costs and concerns about emission issues. This paper presents modelling and control of a Building Integrated Fuel Cell and Plug-in Electric Vehicles (BIFC-PEV) in smart distribution systems. In BIFC-PEV system, conventional building elements could be replaced by sp...
متن کاملDetailed Modeling and Novel Scheduling of Plug-in Electric Vehicle Energy Storage Systems for Energy Management of Multi-microgrids Considering the Probability of Fault Occurrence
As an effective means of displacing fossil fuel consumption and reducing greenhouse gas emissions, plug-in electric vehicles (PEVs) and plug-in hybrid electric vehicles (PHEVs) have attracted more and more attentions. From the power grid perspective, PHEVs and PEVs equipped with batteries can also be used as energy storage facilities, due to the fact that, these vehicles are parked most of the ...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017